• CV Series Switches for 115 or 115/230 Voltage (VAC) Dual Voltage Capacitor Start Motor - 2

    Basic Operation

    Capacitor start motor require a method to extract speed data from the voltage across the motor start winding. By comparing the start winding RPM-sensitive voltage with the main AC input voltage (which serves as a reference voltage), the switch determines when the start circuit should be energized. The electronic switch interrupts the start circuit current after the motor has accelerated to the cut out speed, and reconnects the start circuit whenever the motor speed has fallen to cut in speed (usually about 50 % of synchronous motor speed).

  • 2CV Series Switches for 230 Voltage (VAC) Capacitor Start Motor

    Basic Operation

    Capacitor start/capacitor run motors and capacitor start motors provide continuous voltage sensing information which can be used to extract speed data from the voltage across the motor start (auxiliary) winding. By comparing this start (auxiliary) winding RPM-sensitive voltage to the main AC input voltage (which serves as a reference voltage), the switch determines when the start circuit should be de-energized. The electronic switch interrupts the start circuit current after the motor has accelerated to the cut out speed, and reconnects the start circuit whenever the motor speed has decreased to a preselected cut in RPM level.

    Capacitor start/capacitor run motors exhibit current transients and higher voltages across the start switch. This electrical stress is due to the voltage differential which may exist between the start and run capacitors at the instant of switch closure. This stress phenomenon occurs with both mechanical and electronic type start switches. SINPAC® Switches have voltage detection circuitry to minimize the effects of these conditions.

  • 2CV Series Switches for 230 Voltage (VAC) Capacitor Start Motor

    Basic Operation

    Capacitor start/capacitor run motors and capacitor start motors provide continuous voltage sensing information which can be used to extract speed data from the voltage across the motor start (auxiliary) winding. By comparing this start (auxiliary) winding RPM-sensitive voltage to the main AC input voltage (which serves as a reference voltage), the switch determines when the start circuit should be de-energized. The electronic switch interrupts the start circuit current after the motor has accelerated to the cut out speed, and reconnects the start circuit whenever the motor speed has decreased to a preselected cut in RPM level.

    Capacitor start/capacitor run motors exhibit current transients and higher voltages across the start switch. This electrical stress is due to the voltage differential which may exist between the start and run capacitors at the instant of switch closure. This stress phenomenon occurs with both mechanical and electronic type start switches. SINPAC® Switches have voltage detection circuitry to minimize the effects of these conditions.

  • VR Series Switches for 115 or 115/230 Voltage (VAC) Dual Voltage Capacitor Start/Capacitor Run Motor - 2

    Basic Operation

    Capacitor start/capacitor run motors provide continuous voltage sensing information which can be used to extract speed data from the voltage across the motor start winding. By comparing this start winding RPM-sensitive voltage to the main AC input voltage (which serves as a reference voltage), the switch determines when the start circuit should be de-energized. The electronic switch interrupts the start circuit current after the motor has accelerated to the cut out voltage (speed), and reconnects the start circuit whenever the speed sensitive circuit senses the motor voltage (speed) has decreased to a preselected cut in voltage (RPM) level.

    Capacitor start/capacitor run motors exhibit current transients and higher voltages across the start switch. These electrical stresses occur due to the switching of the two capacitors (start and run) that are connected in parallel during motor start and may have different voltages at time of restart. These stresses occur at restart with both mechanical and electronic start switches. The VR switch features circuitry designed to eliminate the effects of these conditions.

  • IR-Series-for-Instant-Reversing-Vac-Dual-Voltage-Capacitor-Start-Motors

    Basic Operation

    Bidirectional motors - those that can rotate in either direction – are of two classes: 1. Reversing motors , which can change from full speed in one direction to full speed in the opposite direction. 2. Reversible motors , which can be reversed only when the motor is not running, or is running below cut out speed. Some motor manufacturers distinguish between quick reversing and instant reversing. A quick reversing motor requires a time delay of approximately 1/25th of a second or more for the switching circuitry to react. An instant reversing motor requires absolutely no time delay. The standard SINPAC Switch can be used on reversible and reversing motors. The SINPAC IR Series Switch provides the function of a direction sensing centrifugal switch and makes a reversible capacitor start motor into an instant reversing motor.

    In order to reverse a single-phase motor, it is necessary to reverse the polarity of either the start or main winding, but not both at the same time. The reversal of the winding is accomplished with an external reversing switch or contactor that is not part of the SINPAC Switch. SINPAC Instant Reverse Switch is not dependent upon how quickly the user operates the reversing switch, but only that the reversing switch did change states, i.e., forward to reverse, or vice versa. The SINPAC Switch detects the change in the phase shift between the main and start windings, and the logic circuit instantly actuates the starting switch, causing the start circuit to be reconnected to line voltage. This connection causes the motor to decelerate and then reaccelerate in the opposite direction. The SINPAC IR Series Switch interrupts the start circuit current after the motor has accelerated to the cut out speed, and reconnects the start circuit whenever the circuit senses the motor speed has fallen to cut in speed (usually about 50% of synchronous motor speed).